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An ovarian follicle progresses through several stages 
during its lifetime: quiescence (primordial follicles), 
growth (preantral and antral follicles), ovulation, and 
atresia. The entrance of a primordial follicle into the 
growing pool, its selection as a dominant follicle com- 
mitted to ovulation and luteinization, or its exit from the 
pathway through atresia are determined by the concerted 
actions of endocrine, paracrine, and autocrine factors.1 

The members of the transforming growth factor-β 
(TGF-β) superfamily and their roles in the regulation of 
follicle growth and development have been reviewed in 
several recent articles.2~4 TGF-β superfamily members 
are involved in every stage of follicle growth. TGF-β, 
activin, inhibin, growth differentiation factor-9 (GDF9), 
anti-Mullerian hormone (AMH, MIS), and several of 
the bone morphogeneic proteins (BMPs) are involved 
in stimulatory and inhibitory paracrine communication 
between the oocyte, granulosa cells, and theca cells and 
autocrine signaling within each cell type to ensure the 
timely maturation and growth of a single follicle. Because 

early follicle growth is gonadotropin-independent, the 
primordial to primary follicle transition and the develop- 
ment of the theca layer in early follicle development is 
directed by local communication between the oocyte, 
granulosa cells, and stroma. Therefore, their roles in 
early follicle growth have been of particular interest in 
the last 5 years, as well as TGF-β superfamily signaling 
is also essential for the acquisition of follicle-stimulating 
hormone (FSH) responsiveness by preantral follicles 
and for the modulation of gonadotropin-stimulated antral 
follicle growth and steroidogenesis. 

The expression patterns and localization of the TGF-β 
superfamily ligands and signal transduction components 
in the mammalian ovary have been the subject of 
numerous reviews and will not be recounted in detail 
here.3,5~9 Suffice to say; the ovary expresses TGF-β super- 
family receptors and signaling components in every 
follicle stage, with primordial follicles containing intact 
TGF-β and BMP signal transduction pathways, and 
preantral and antral follicles capable of supporting activin, 
TGF-β, and BMP signals. 

Understanding the role of the TGF-β superfamily 
ligands in ovarian follicle development is complicated 
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by cross-talk that occurs at every level of their signaling 
pathways.10 In addition, the actions of the TGF-β super- 
family ligands in the ovary modulate and are in turn 
regulated by the gonadotropins, steroid hormones, various 
growth factors, and the interleukins. All of these factors 
act within and between discrete cellular compartments 
of the ovarian follicle in a stage-dependent manner to 
direct follicle recruitment, oocyte maturation, follicle cell 
proliferation and differentiation, atresia, steroidogenesis, 
ovulation, and luteinization. 

This review will examine the roles of particular TGF-β 
superfamily members in directing ovarian follicle growth 
and development, followed by a discussion of future 
research directions for this field. 

TGF-β 

TGF-β is expressed in granulosa cells of primary 
follicle stage and in theca cells of large preantral follicles, 
11,12 and the TGF-β type I and II receptors are found in 
granulosa, theca and interstitial compartment.13 TGF-β 
is generally anti-proliferative, but its effects can vary 
based on cell type, follicle stage, and species. For example, 
a recent study showed that in immature rat granulosa 
cell cultures, TGF-β acts as an autocrine stimulator of 
DNA synthesis, an effect which is enhanced by FSH 
and estradiol.14 TGF-β action may also be age-dependent 
in that it stimulates follicle growth in adult mice but 
not in immature mice.15 In cultured theca cells, TGF-β 
inhibits androgen synthesis, likely by inhibiting StAR 
expression,16 whereas in granulosa cells, TGF-β augments 
FSH-induced luteinizing hormone (LH) receptor expre- 
ssion and potentiates progesterone production.17 TGF-β 
has also been shown to stimulate inhibin expression in 
rat ovarian cells, which may be necessary for initiation 
of inhibin production by early growing follicles.18 

Activin 

In order to progress past the small antral stage and 

bypass atresia, follicles must acquire FSH responsiveness; 
it is believed that activin is involved in the preantral to 
antral follicle transition by up-regulating FSH receptor 
expression in granulosa cells.19,20 Thus, the follicle with 
the greatest capacity for activin signaling may also be 
more responsive to FSH, and better prepared to progress 
to the antral stage. Further, it has been suggested that 
activin inhibits the progression of non-dominant follicles; 
in one study, activin from secondary follicles suppressed 
the growth of primary follicles.21 It also appears that 
activin actions may be age-dependent, though contrary 
to that of TGF-β: activin induces follicle growth in 
immature but not in mature mice.15 Outside the granu- 
losa cell, activin stimulates proliferation of theca-
interstitial cells in culture,22 suppresses LH-stimulated 
androgen production and premature luteinization in 
small to medium antral follicles,23,24 and may affect 
oocyte maturation and competence.25 

On the molecular level, a recent study demonstrated 
that Smad2 and Smad3 are highly expressed in the 
granulosa cells of preantral follicles, further supporting a 
role for activin in the acquisition of FSH responsiveness 
in these follicle classes.26 Smad3 null mice were recently 
found to have a higher number of primordial follicles 
and lower number of large preantral and antral follicles 
than their wild-type littermates.27 Perhaps the loss of 
activin signaling through Smad3 in these mice prevents 
the progression of preantral follicle growth and favors 
the anti-proliferative effects of TGF-β signaling through 
Smad2. Likewise, the activation of primordial follicles 
might be regulated thru Smad3 involved signaling path- 
way. 

Inhibin 

The activin and inhibin subunits are produced in the 
granulosa cells and act on all cellular compartments of 
the follicle. Intraovarian levels of Activin and inhibin 
through folliculogenesis dependent on the relative 
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abundance of α-subunit and β-subunits.28,29 Production 
of the inhibin β-subunit increases as follicles grow, such 
that antral follicles primarily produce inhibin. In addition, 
the βA-subunit is expressed in all follicle stages, whereas 
the βB-subunit expression is limited to small antral 
follicles. Thus, antral follicles shift from inhibin A to 
inhibin B production as they grow. Though no indepen- 
dent inhibin receptor has been found to date, inhibin has 
been shown to have direct effects on the ovary. Pren- 
dergast et al. recently demonstrated that ovariectomy or 
immuno-neutralization of inhibin causes an increase in 
follistatin transcription that can not be rescued by estra- 
diol replacement or by blocking gonadotropin releasing 
hormone (GnRH).30 In addition, inhibin promotes LH-
stimulated androgen production in the theca cell23,31 and 
suppresses estradiol production by cultured bovine 
granulosa cells.32 A recent in vivo study has suggested 
that inhibin produced by large antral follicles may deter- 
mine dominant follicle selection through induction of 
apoptosis in non-dominant follicles (preantral and early 
antral follicles).33 

BMPs 

In antral follicles, BMP4 and BMP7 are produced in 
the theca cells, whereas BMP receptors are expressed in 
the oocyte and granulosa cells of most follicles in ovaries 
of normal cycling rats34,35 and, to a lesser extent, the 
theca layer of antral follicles in sheep ovaries.36 BMP4 
and BMP7 appear to delay luteinization and atresia in 
antral follicles by modulating granulosa and theca cell 
responsiveness to gonadotropins. In vivo, BMP7 treat- 
ment of rat ovaries suppresses ovulation and luteiniza- 
tion.37 Female BMP type IB receptor null mice are 
infertile, with decreased cumulus expansion and aroma- 
tase activity.38,39 In granulosa cells, BMP4 and BMP7 
augment FSH-stimulated estradiol synthesis and suppress 
progesterone secretion35 through modulation of FSH-
stimulated aromatase expression and down-regulation 

of StAR expression.37 In cultured theca cells, BMP4 
attenuates cAMP-stimulated androstenedione and pro- 
gesterone production.40 

BMP4 and BMP7 are also involved in promoting 
preantral follicle growth. BMP7 increases proliferation 
of granulosa cells in the presence of FSH,37 and both 
BMP4 and BMP7 treatment of rat ovaries in culture 
results in a larger number of developing primary follicles 
and a smaller primordial follicle pool.37,41 Furthermore, 
culture of ovaries with a BMP4 immuno-neutralizing 
antibody are smaller, have a progressive loss of primor- 
dial follicles, and show an increase in apoptotic activity.41 

BMP6 is produced by the oocyte in the primary 
follicle stage.42 Unlike BMP4 and BMP7, BMP6 has no 
effect on the proliferation of granulosa cells or estradiol 
production, but suppresses FSH-induced progesterone 
synthesis through down-regulation of adenylyl-cyclase 
activity.42 BMP6 also stimulates inhibin B and βB-
subunit production in primary human granulosa cell 
cultures.43,44 The precise role of BMP6 in early follicle 
growth is not completely understood. BMP6 null mice 
are viable and fertile and show no overt defects in tissues 
known to express BMP6 mRNA. Patterns of BMP2 and 
BMP6 expression in other tissue suggest the possibility 
of functional compensation,45 because BMP2 also has 
been shown to increase estradiol and inhibin A pro- 
duction without affecting the proliferation of the cells 
by sheep granulosa cells.36 

AMH 

In the adult rat, AMH and the AMH type II receptor 
(AMHRII) are exclusively expressed in granulosa cells 
of preantral and small antral follicles, not in primordial 
follicles. The colocalization of AMH and AMHRII 
mRNAs in granulosa cells of specific follicle types 
suggests that actions of AMH via AMHRII are autocrine 
in nature.46 In general, AMH inhibits primordial follicle 
recruitment and suppresses FSH-responsiveness of pre- 
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antral follicles.47 As follicles grow, AMH levels decline. 
Mice null for either AMH or the AMH type II receptor 
are fertile,39,48,49 however, AMH null mice have an in- 
creased number of growing follicles and decreased 
number of primordial follicles than their wild type litter 
mates.49 The inhibitory role of AMH in small follicle 
growth is supported by recent findings in cultured 
mouse ovaries in which AMH suppressed recruitment 
of primordial follicles into the growing pool50 and 
counteracted FSH-stimulated preantral follicle growth.51 
Expression pattern of AMH is located in GCs closest to 
oocyte. So, it should be autocrine or juxta-crine, rather 
than paracrine or endocrine. In vitro studies demon- 
strated that AMH signals are transduced through ALK2 
and Smad1.52 

GDF9 and BMP15/GDF9B 

In the rat, GDF9 and BMP15 (also called GDF9B) 
are expressed exclusively in the oocyte and act in a 
paracrine manner on granulosa and theca cells.53,54 
Interestingly, primate granulosa cells also secrete and 
respond to GDF9, suggesting that it acts as an autocrine 
factor in primates.55 GDF9 appears to be a general mar- 
ker for oocyte and follicle health. 

GDF9 deficient mice show arrest of follicular 
development at the primary one-layer follicle stage.56 
Recombinant GDF9 induces preantral rat follicle growth 
in vitro,57 as well as promotes granulosa cell proliferation 
in early preantral follicle stages58,59 and in larger follicles, 
increases progesterone synthesis in vitro and induces 
cumulus expansion.60 Recent studies have demonstrated 
that GDF9 also stimulates Smad2 activation and inhibin 
production in rat and human granulosa cells.61,62 GDF9 
suppresses FSH-induced granulosa cell differentiation 
(steroidogenesis, cAMP production and LH-receptor 
expression) in vitro.63 

More significantly, GDF9 indirectly acts on the theca 
cell to promote differentiation58,64 by stimulating kit 

ligand production in granulosa cells, which in turn 
initiates theca cell recruitment from the stroma.65,66 
GDF9 enhanced both basal and stimulated androstene- 
dione accumulation in the primary and transformed 
theca-interstitial cell (TIC) cultures.67 The effects of 
GDF9 on steroidogenesis by preovulatory follicles were 
relatively modest. Likewise, it did not affect the matura- 
tion of follicle-enclosed oocytes. The effect of GDF9 on 
TIC androgen production suggests a regulatory role of 
the oocyte on theca cell function and hence on follicle 
development and differentiation. 

In cultured human theca cells, however, GDF9 
decreases cAMP-stimulated progesterone and StAR 
expression, lending support to the suggestion that this 
factor acts differently in primates and rats.68 

Like GDF9, BMP15 stimulates cell proliferation, 
decreases FSH-stimulated progesterone production (by 
decreasing FSHR expression), and stimulates kit ligand 
expression in granulosa cells.54,69,70 BMP15 expression 
is in turn down-regulated by kit ligand in the oocyte, 
and loss of this feedback loop reduces granulosa cell 
proliferation.69 BMP15 actions are dose-sensitive, as 
sheep homozygote for a naturally occurring BMP15 
mutation have reduced fertility, whereas the heterozy- 
gotes exhibit increased ovulation.71 Recent work has 
demonstrated that GDF9 binds to the BMP-activated 
type II receptor (BMPRII), but, its downstream actions 
are mediated by the type I receptor, ALK5, and the 
Smad2 and Smad3 proteins. Because ALK5 is a known 
receptor for TGF-β, diverse members of the TGF-β 
family of ligands appear to interact with a limited number 
of receptors in a combinatorial manner to activate two 
downstream Smad pathways.72 Unlike GDF9, BMP15 
was found to interact with ALK6 and activates the 
downstream Smad1.73 Thus, the actions of paralogous 
GDF9 and BMP15 are mediated by distinct receptors 
and intracellular pathways, suggesting these oocyte 
ligands could play unique roles in follicle development. 
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Follistatin and betaglycan 

Follistatin and betaglycan are TGF-β superfamily 
signaling modulators; follistatin binds and neutralizes 
activin and the BMPs,4 and betaglycan has been shown 
to modulate TGF-β, activin, and BMP signal transduc- 
tion.74~76 Follistatin is primarily expressed in granulosa 

cells of antral follicles and in luteinized granulosa cells, 
and betaglycan is expressed in granulosa and theca cells 
in antral and preovulatory follicles.77 Thus, early follicles 
are activin-dominant; as they grow, follicles gradually 
lose their activin "tone" as follistatin, betaglycan, and 
inhibin expression increase. Follistatin counteracts activin 
and BMP actions in the ovary and thus generally pro- 

Figure 1. The members of the TGF-β superfamily act in a stage-specific manner to direct follicle recruitment, 
oocyte maturation, granulosa and theca cell proliferation and differentiation, and steroidogenesis. Cellular expression 
is indicated in parenthesis next to each TGF-β superfamily member, with the actions on follicle cell types listed below
each member. G, granulosa; T, theca; O, oocyte; LH, luteinizing hormone; FSH, follicle-stimulating hormone; LHR, 
LH receptor; E2, estradiol; P, progesterone. 
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motes luteinization and atresia. Follistatin also inhibits 
BMP15-stimulated granulosa cell proliferation and 
rescues FSH-stimulated progesterone secretion.78 Whe- 
ther betaglycan has similar inhibitory effects on activin 
and BMP actions in the ovary is yet to be discovered. 

Future directions/Conclusions 

Though our understanding of the role of the TGF-β 
superfamily in regulation of ovarian follicle growth and 
development continues to grow, recent studies have 
begun to address the mechanics of paracrine signaling 
within the ovary. In particular, new research is beginning 
to uncover the role of cell-cell interaction and cell-
extracellular matrix (ECM) interactions in the directional 
movement and delivery of paracrine factors between 
follicle cell compartments and across the zona pellucida 
(ZP) and basal lamina. Recent work has identified trans- 
zonal projections that cross the ZP and deliver growth 
factors from the granulosa cell layer to the oocyte.79 
Paracrine signaling within the follicle also requires remo- 
deling of barriers between cell layers and reorganization 
of the ECM, the components and structures of which 
constantly change as a follicle grows.80 The ECM 
facilitates paracrine factor concentration at site of action 
and protection from degradation, with release requiring 
the actions of matrix metalloproteinases (MMPs).81 In 
turn, members of the TGF-β superfamily have been 
shown to modulate the ECM; TGF-β1, activin, and 
GDF9 dose-dependently increase the expression of lysyl 
oxidase, an enzyme required for ECM cross-linking,82  
and the expression of connective tissue growth factor, 
which is thought to be involved in theca layer recruit- 
ment and deposition of the basement membrane.83 

In conclusion, the members of the TGF-β super- 
family act as stage- and cell-specific paracrine factors 
that, in conjunction with the steroid hormones, the 
gonadotropins, and other growth factors, orchestrate 
the timely growth and development of the follicle 

(summarized in Figure 1). These factors influence the 
differentiation and proliferation of granulosa cells, the 
recruitment of the theca cell layer, the maturation of the 
oocyte, and steroidogenesis. Research continues to clarify 
the roles of each of these factors as well as unravel their 
relationships with one another, with other factors, and 
with ovarian cell structures with the goal of under- 
standing how a follicle is guided from a primordial 
follicle to a follicle competent for ovulation. 
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